Broadband directional coupling in aluminum nitride nanophotonic circuits
نویسندگان
چکیده
منابع مشابه
Nanophotonic Circuits Holography
Genes tell cells what to do—for example, when to repair DNA mistakes or when to die—and can be turned on or off like a light switch. Knowing which genes are switched on, or expressed, is important for the treatment and monitoring of disease. Now, for the first time, Caltech scientists have developed a simple way to visualize gene expression in cells deep inside the body using a common imaging t...
متن کاملBroadband circulators based on directional coupling of one-way waveguides.
Resonator-based optical circulators are fundamentally bandwidth-limited by their quality factors. We propose a new type of circulator based on directional coupling between one-way photonic chiral edge states and conventional two-way waveguides. The operational bandwidth of such circulators is tied to the bandwidth of the directional waveguide coupler and has the potential for simultaneous broad...
متن کاملDesign of Broadband Coupling Circuits for Power- Line Communication
One of the most critical components of any Power Line Communication (PLC) system is its interface circuit (or coupling circuit) with the power distribution network. This is by no means a simple unit considering the challenging characteristics of the PLC channel. Due to high voltages, varying impedances, high amplitudes and time dependent disturbances, coupling circuits need to be carefully desi...
متن کاملGrating-assisted coupling to nanophotonic circuits in microcrystalline diamond thin films
Synthetic diamond films can be prepared on a waferscale by using chemical vapour deposition (CVD) on suitable substrates such as silicon or silicon dioxide. While such films find a wealth of applications in thermal management, in X-ray and terahertz window design, and in gyrotron tubes and microwave transmission lines, their use for nanoscale optical components remains largely unexplored. Here ...
متن کاملSilicon Nitride Background in Nanophotonic Waveguide Enhanced Raman Spectroscopy
Recent studies have shown that evanescent Raman spectroscopy using a silicon nitride (SiN) nanophotonic waveguide platform has higher signal enhancement when compared to free-space systems. However, signal-to-noise ratio from the waveguide at a low analyte concentration is constrained by the shot-noise from the background light originating from the waveguide itself. Hence, understanding the ori...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Express
سال: 2013
ISSN: 1094-4087
DOI: 10.1364/oe.21.007304